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ECOLOGICALLY ORIENTED MINERAL EXPLORATION: THE SYNERGY OF 
REMOTE SENSING AND MACHINE LEARNING 

 
Annotation. The article explores the prospects of integrating remote sensing (RS) and 

machine learning (ML) in mineral exploration. The combination of these advanced technologies 
opens new horizons for geological research, enabling more efficient and accurate identification 
of mineralization, mapping of lithological units, and analysis of structural features and alteration 
zones. The paper examines current methods of processing remote sensing data using various 
machine learning algorithms, including deep neural networks and clustering methods. Special 
emphasis is placed on practical examples demonstrating the successful application of RS and 
ML synergy in geological exploration. The main challenges and future research prospects in this 
area are also discussed, highlighting the potential to significantly enhance the efficiency and 
sustainability of mineral exploration processes. 

Keywords: Remote sensing; geological mapping; satellite imagery; mineral 
exploration; optical; hyperspectral. 

 
Introduction 

Geology is the science of Planet Earth. It deals with the study of the materials that make 
up the planet, the phenomena that affect those materials, the resulting products, as well as the 
history of the planet and the life forms that have existed on it since its inception [1]. Remote 
sensing is the art or science of obtaining information about an object without direct contact, 
often defined in various ways [2]. This concept has been defined by many scientists, including 
Lintz and Simonett [3], Curtis [4], and Colwell [5]. In general, remote sensing involves 
acquiring information about the Earth's land and water surfaces through images captured from 
above, using electromagnetic radiation in one or more ranges of the electromagnetic spectrum 
reflected or emitted from the Earth's surface [6]. Geological remote sensing, therefore, can be 
defined as the study of geological structures and surfaces, both on Earth and beyond, using 
technologies that analyze their interaction with the electromagnetic spectrum, without direct 
contact with the objects of study. 

In the early days of geological work, a series of Landsat satellite images were used 
extensively. These images were particularly valuable for geologists conducting regional 
surveys, as the multiple coverages provided by Landsat data allowed them to assess changes in 
vegetation and the angle of sunlight, which are important for understanding the physical history 
and formation conditions of the Earth [7]. Y. Isachsen, an employee of the Geological Survey of 
the State of New York, used space images measuring 100 by 100 miles to create mosaics of the 
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state and its neighboring regions. These mosaics clearly revealed the geological connections of 
New York's diverse landscape, including basic rock units, glacial features, major linear 
structures, and circular formations (Figure 1). Isachsen visited these areas to verify the existence 
of many features identified in the Landsat mosaic and demonstrated how satellite images could 
be used to detect features not observed in large-scale studies [8]. 

 

 
 

Figure 1 - LANDSAT mosaic and lineament map of eastern New York State (after 
Isachsen, 1973). 

 
The next significant advancement came with the launch of the ASTER satellite 

(Advanced Spaceborne Thermal Emission and Reflection Radiometer). Launched in December 
1999, the TERRA spacecraft orbits the Earth in a sun-synchronous orbit with an inclination of 
about 98.2°, an altitude of 705 km, and a repeat cycle of 16 days. The TERRA platform hosts 
the advanced multi-spectral imaging system ASTER, which is part of the Earth Observation 
System (EOS). ASTER measures visible reflected radiation in three spectral bands (VNIR 0.52 
to 0.86 µm, with a spatial resolution of 15 m) and infrared reflected radiation in six spectral 
bands (SWIR 1.6 to 2.43 µm, with a spatial resolution of 30 m). Numerous geological studies 
have utilized the ASTER multispectral system [9]. For example, [10] the study used data from 
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to clarify the 
geological structure of the Precambrian basement of the Proterozoic inlier at Igherm, located in 
the Central Anti-Atlas region of Morocco. The interpretation of the digitally processed data in 
this study was complemented by geological field data collected through an exploration and 
mapping program in the Central Anti-Atlas. The use of ASTER data for mapping the 
lithological composition of rocks through the spectral information of thermal channels has been 
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applied in studies such as the investigation of rock composition at Mountain Pass, California, 
USA [11]. Another example is the rock mapping in the Bodie region of California, USA [12], 
where gold and silver deposits were identified due to hydrothermal alterations in volcanogenic 
complexes. Attempts were made to quantify the SiO2 content in rocks using spectral analysis of 
satellite images. Research was conducted in the Hiller Mountains, Nevada, USA, and in 
Virgines-La Reforma, Baja California Sur, Mexico [13]. As a result of the work on spectral 
data, maps of the quantitative SiO2 content in rocks were created. In Nevada, USA, the 
feasibility of mapping minerals and rocks containing ammonium using spectral methods was 
demonstrated [14]. Copper-porphyry deposits are among the most commonly studied objects, 
characterized by naturally varying contrasts in the mineral composition due to hydrothermal 
alterations. A spectral map of porphyry deposits was developed for the Silver Belt region, 
specifically in areas such as Arizona, USA [15], Collahuasi in northern Chile [16], and others 
[17]. The study identified propylite, clay, and phyllite zones of hydrothermal-metasomatic 
changes in the bedrock. Hyperspectral images, widely used in geological exploration and 
environmental monitoring, provide detailed information about the spectral characteristics of 
various materials on the Earth's surface. Unlike multispectral images, which cover several broad 
spectral ranges, hyperspectral data consists of hundreds of narrow spectral bands, allowing for 
more precise identification and differentiation of minerals, soils, and vegetation. This data is 
particularly useful for mapping mineralization, analyzing areas of change, detecting 
geochemical anomalies, and monitoring soil degradation. Due to their high spectral resolution, 
hyperspectral images enable researchers to identify hidden geological features and analyze them 
with exceptional accuracy, opening up new opportunities for effective exploration and 
development of mineral resources. [18] in this study demonstrates that high-resolution AISA 
hyperspectral images (2 m) provide a more accurate representation of mafic and ultramafic 
rocks in the Subarctic region compared to EnMAP images (30 m). Van der Meyer et al. [19] 
utilized hyperspectral images for detailed mapping of lithological units, significantly enhancing 
the understanding of the geological structure of the studied area. In Clark's study [20], 
hyperspectral data were used to analyze the mineral content of the surface in arid regions, where 
traditional mapping methods were challenging due to the lack of vegetation. This approach 
enabled the identification of new potential mining sites. Kruse [21] also noted that hyperspectral 
images can effectively identify minerals associated with hydrothermal alteration zones, which is 
particularly important for mineral deposit exploration. Additionally, laboratory studies 
conducted by Graham Hunt have made a significant contribution to specialists working with 
optical remote sensing data [22]. Graham Hunt and John Salisbury systematically analyzed the 
diagnostic absorption features of all major groups of minerals and rocks. Their work was 
published in the journal "Modern Geology" [23]. Figure 2 presents a spectral signature diagram 
illustrating the effects of electronic and vibrational processes observed in different minerals 
under laboratory conditions [22]. 
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Figure 2 - Spectral signature diagram 
 

Fundamentals of machine learning in remote sensing data processing. Classification is 
the process of categorizing input data into target classes using a discriminative function, 𝑦𝑦=𝑓𝑓(𝑥𝑥). 
In machine learning, a classification model 𝑓𝑓′ is created, which, along with the operator, 
approximates this function and assigns inputs to the target classes [24, 25].  

The classification process is divided into three stages: (1) data preprocessing, (2) model 
training, and (3) predictive evaluation. Preprocessing involves preparing and transforming the 
data to ensure its relevance [26, 27]. Model training includes setting algorithm parameters using 
methods such as cross-validation. Evaluation is performed on test data to assess the model's 
ability to classify new samples accurately [25, 28]. To assess the performance of models, 
indicators such as overall accuracy and the kappa coefficient are often used, particularly in 
remote sensing applications [29]. 

Machine learning algorithm theory. Naive Bayes is one of the simplest and most 
effective machine learning algorithms, widely used in various scientific fields, including 
geology. This method is based on Bayes' theorem and assumes that all features used for 
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classification are conditionally independent of each other (figure 3). Despite its simplified 
assumptions, the Naive Bayes classifier demonstrates high accuracy and efficiency in solving 
various classification problems in geological research [30]. In geology, Naive Bayes is used for 
tasks such as predicting rock types, identifying mineralization zones, and classifying spectral 
data obtained through remote sensing.  For example, in the work by Elrasheed and Szabó [31], 
this method was used to classify lithological units based on spectral data obtained from 
hyperspectral images. The results showed that the Naive Bayes classifier can effectively utilize 
spectral features to distinguish between different rock types, demonstrating high accuracy and 
robustness to parameter variations. 

 

 
Figure 3 - Naïve Bayes Classifier 

 
Forson, E. D., and Amponsah, P. O. [32] used Naive Bayes to identify mineralization 

zones in the Copper Mines area based on geochemical data. The authors noted that this method 
is effective for processing large datasets to identify significant geological patterns, which in turn 
improved the efficiency of mineral exploration. Additionally, the Naive Bayes classifier has 
been successfully applied in avalanche forecasting problems. Chen W. et al. [33] applied the 
Naive Bayes method to assess the risk of landslides based on geological and climatic data. The 
study demonstrates that Naive Bayes can be a valuable tool for evaluating the likelihood of 
landslides and implementing appropriate risk management measures. 

Thus, the Naive Bayes classifier has proven to be an effective tool in geology, 
particularly for classification and forecasting based on large datasets. Its simplicity, high 
computational speed, and ability to handle high-dimensional data make it an attractive choice 
for geological research. 

The k-Nearest Neighbors (kNN) method is a simple and efficient machine learning 
algorithm commonly used in remote sensing for classification and regression tasks. This algorithm 
falls under the category of lazy learning methods, which do not create explicit models but instead 
analyze the nearest neighbors of an object in the feature space to make decisions [34]. 

In geological research and remote sensing, the kNN method is used to classify soil 
types, vegetation, and geological formations, as well as to map minerals and other resources. 
This is made possible by the algorithm's ability to adapt to various data types and handle 
multidimensional feature spaces, which is particularly valuable when analyzing satellite images. 

A study by Zhang et al. [35] demonstrated the successful use of the kNN algorithm for 
mineral classification based on spectral characteristics obtained from hyperspectral data. The 
classification accuracy reached 90% when the k parameter was appropriately selected and data 
preprocessing methods were applied to reduce noise [35]. 

One of the main advantages of the k-NN method is its simplicity and ease of 
interpretation. The algorithm does not require complex hyperparameter tuning and is easily 
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adaptable to various tasks. Additionally, kNN performs well with small training samples that 
have a high degree of heterogeneity (figure 4). 

 

 
 

Figure 4 - The k-Nearest Neighbors 
 
However, this method has some limitations. Firstly, the algorithm's performance heavily 

depends on the size of the training sample; as the number of objects increases, the need to store 
data in memory can become a bottleneck when working with large datasets [36]. Secondly, the 
choice of the distance metric and the parameter k significantly affects classification results, 
necessitating further research and experimentation. 

Random Forests—using advanced mapping tools, remote scientists can help locate rare 
metals and other valuable resources. However, the vast amount of map data and the complex 
variability of Earth's layers make precise resource identification challenging. Traditional 
methods often fall short due to limited data, so advanced mathematical tools are needed to 
improve predictions. Random Forests excel in handling large datasets and reducing errors, 
making them ideal for predicting the locations of these metals, leading to more accurate 
resource identification. 
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Figure 5 - Random Forest 

 
Random Forests are widely utilized in earth science for detecting patterns in mineral 

deposits. They facilitate the development of models that handle complex data with multiple 
variables. A key advantage of using Random Forests is their ability to integrate different types 
of data. For instance, combining satellite imagery with ground surveys enhances the accuracy of 
predictions. In mineral exploration, using semi-automatic methods with Landsat-TM imagery 
can distinguish between active mining sites and areas containing mining waste. This approach 
provides crucial information for exploring large regions, such as Slovakia and Romania [37]. By 
combining satellite images with existing knowledge of known mining features, the strengths of 
both methods are leveraged, improving the quality of data for predictions. This multi-layered 
approach has demonstrated successful outcomes in mineral exploration. 

The group learning plan of Random Forests improves figuring out by putting together 
many choice trees by different input info. This tactic lessens the risk of over-learning, a result 
common in earth datasets that are often fairly rocky and changing, making it impossible to get 
dependable predictions. Meanwhile, combining results from many trees allows staying tough to 
info irregularities. Moreover, this way is good for mineral searching as it allows for a bunch of 
info kinds, including spectra and geological things. Finally, the coming of far sensing tech has 
allowed making a great amount of high space and spec resolution satellite photos [38]. 

The large number of features in remote sensing data makes it easier to figure out what 
minerals are present because Random Forests are good at picking out the important features. 
This helps choose the most helpful spectral bands for finding minerals. Getting more accurate 
results in geological assessments and mineral maps depends on using the right features. Since 
these models don't overfit, they aren't limited to the training data and can be used with other 
datasets. Better understanding of mineral extraction locations and waste areas can help with 
managing mining waste. Remote sensing methods like semi-automated principal component 
analysis provide more detailed pictures and can tell the difference between mineral extraction 
and waste locations [37]. 

In short, using Random Forests together with location data has boosted guesswork about 
mineral locations. The bunching-up learning method cuts down on the risk of wonky results in 
the study of rocks and leads to more reliable and exact outcomes. Also, the ability to handle 
high-detail pictures from space has amped up the accuracy of mineral finding, which is key for 
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searching for new deposits. The arrival of this cool machine learning method has definitely 
changed how we find minerals, opening up fresh ways and making how earth scientists hunt for 
resources totally different. Considering our society's growing need for vital minerals, we need to 
adopt cool tech like Random Forests to help the future of resource searching. Combining these 
breakthroughs alongside Random Forests definitely shows how machine learning can be used 
by mineral experts and shows how to solve problems in new ways. 

Support vector machines (SVMs) have become a key way of looking at and 
understanding info in jobs like earth science, rock science, and space picture taking. SVMs are 
useful because earth science info has gotten complicated due to new technology. Structural earth 
science, which talks about earth structures like plate movement and breaks in the earth, is a vital 
use of this way of doing things. Other areas where SVMs are important include checking on the 
environment and managing natural resources, and finding and sorting minerals based on earth 
science and physics info to guess where deposits are. This way of doing things has become 
important due to the huge amount of info made through research. 

Support Vector Machine (SVM) methods have been shown to work well in dealing with 
massive amounts of data in earth science research. They effortlessly discover patterns from 
large spatial data and perform well, even with few examples for learning [39]. SVMs help 
researchers understand tectonic movement and fault lines through predictive modeling. The 
practical use of SVMs in satellite data is clear in geologic mapping and mineral exploration, 
where their performance matches that of traditional classifiers. It is possible to work with 
varying degrees and sizes of examples because SVMs adjust easily to real-world conditions. 

Support Vector Machine (SVM) plans greatly increase the rightness of land cover 
sorting by looking at bulk facts got from grouped pictures. They enable better sorting results 
without needing earlier feature picking steps, as the Hughes rule does with old sorting plans 
[40]. This is especially useful in case of time change finding, as such changes can be watched 
and managed (e.g., deforestation, urbanization and other key ecological systems). The rightness 
of SVM sorting guesses helps with good care of natural things, as this way allows an adequate 
answer to fast ecological change caused by people's actions. 

 

 
Figure 6 - Support Vector Machine (SVM) 

 
Support Vector Machine (SVM) is a key part of handling tons of information to find 

patterns in earth science data. It uses a method based on stats to make predictions about where 
minerals are found more reliable. For instance, in side-by-side tests, SVM did a better job of 
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putting alteration zones into groups than other ways of doing things [41]. As finding minerals 
relies more on data, SVM's talent for sorting through complicated information will be very 
important for finding and following minerals. 

The use of support vector machines has dramatically changed the geosciences. In 
connection with the subject of this paper, this suggests that support vector machines have 
improved the study of geological formations and thus the knowledge of the forces shaping the 
earth's surface. On a related note, SVM-based applications have boosted land cover 
classification in remote sensing, which has implications for the management of natural 
resources. Lastly, SVMs have enhanced mineral exploration. The use of support vector 
machines in mineral exploration involves data classification with superior accuracy. In 
conclusion, the use of advanced computational methods is key for the advancement of the fields 
of geology, mineralogy, and remote sensing. 

Artificial Neural Networks – computer brains have been used as a tool that attempts to 
build change in several fields. They have been widely used in taking pictures from space. 
Computer brains have powerful skills for breaking down hard-to-understand facts related to 
rocks. They have affected how rock experts tell what different rocks are by letting them deal 
with oddities in rock identification. They help in using many-color and super-color facts, thus 
making it easier to tell the rise in data worth for telling what different rocks are. Computer 
brains have space-picture uses in finding rock piles. 

To start, computer brain systems greatly improve finding oddities. For instance, they let 
you take a look at mind-boggling geological data patterns, which is crucial for finding mineral 
treasures. The huge amount of info fed in leads to better accuracy when finding mineral 
treasures and lower costs for looking for them. One example is the work on air reading methods 
[42]. In this case, the computer brain learns the real connection between the readings of the light 
signal. Thus, there is no need to make complicated plans, as they might introduce errors in the 
dealing with the data, resulting in less trustworthiness. 

Fake brain systems can figure out what minerals are in colorful pictures. Using different 
kinds of information, like land measurements, rock types, and chemical details, can make 
finding rocks and resources better. Finding rocks and resources needs understanding of how 
different rock features work together, which is especially important when looking for minerals 
because complex relationships affect where they are found [43]. Real-world examples show that 
using fake brain systems to combine information improves rock studies. 

Fake brains proved to be a true jump forward in dealing with complex information 
given by remote sensing tools, boosting the accuracy of spotting mineral bits. The given 
programs are able to work through a huge amount of information in a significantly shorter time 
than old methods, which usually need manual analyzing and lots of site visits. A possible way to 
use this ability is shown by remote sensing research in Slovakia and Romania, which included a 
semi-automatic main component analysis (PCA) on geo-referenced Landsat-TM full scenes to 
improve the separation of mineral extraction and bad mining zones and compare them with old 
maps [37]. These studies show that the use of neural networks can make mineral analyses in 
geology studies easier and give quick data regarding mining actions. 

In short, computer brains have been used to make rock and gem study better. They've 
boosted the spotting of strange things for gem piles, joined multi-color and super-color info to 
give far-off sensing for gem finding more exact and quick. As the world keeps getting hungrier 
for Earth's goodies, using smart tech in the area of rock study is changing how we do it. 

The following table shows a comparison of machine learning methods. The table provides 
data on methods, descriptions, pros and cons, as well as applications in geology (table 1). 

Machine learning is changing many fields by looking at lots of info very fast and right. 
One of these fields is finding ways to get stuff out of the ground, which is important for making 
sure we can get things out of the earth. As the world runs out of stuff from the ground, making 
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finding ways to get stuff out of the ground better is key as it helps find new places to get stuff 
from the earth. However, the cost of using new tech, teaching people how to use it, and getting 
good info are some problems these companies face. But the better and faster analysis of places 
to get stuff from the earth makes using these new tools worthwhile. 

The use of computer learning in today's mineral searching will affect the money of the 
firms. Initially, the right setup and care of the software, including information gathering, will 
need companies to put a lot of dough into these new tools. 
 

Table 1 – Comparison of machine learning methods 
Method Description Advantages Disadvantages Application in 

geology 
Support 
Vector 
Machines 
(SVM) 

An algorithm that uses 
a hyperplane to 
separate classes in a 
multidimensional 
space. 

- High accuracy on 
small samples 
- Effective for 
linearly separable 
data 

- Sensitive to 
parameter 
selection 
- Slow on large 
datasets 

Classification of 
minerals, 
recognition of 
structures, 
analysis of zones 
of changes. 

Artificial 
Neural 
Networks 
(ANN) 

A model that simulates 
the work of the human 
brain, capable of 
modeling complex 
nonlinear 
dependencies. 

- Ability to learn 
from large datasets 
- Suitable for 
complex and non-
linear tasks 

- The need for a 
large amount of 
data 
- The risk of 
over-training and 
difficulty in 
interpretation 

Mineralization 
forecasting, 
lithology 
mapping, 
anomaly 
recognition in 
remote sensing 
data. 

k-Nearest 
Neighbors 
(k-NN) 

An algorithm that 
classifies objects by 
the majority of votes 
of their nearest 
neighbors. 

- Ease of 
implementation 
- Works well on 
small data 

- Sensitive to 
noise 
- Slow 
performance on 
large datasets 

Classification of 
rock types, 
identification of 
geological 
objects. 

Random 
Forests 

Multiple combination 
of decision trees to 
improve classification 
accuracy. 

- High noise 
resistance 
- Effective when 
working with large 
datasets 

- May require 
large computing 
resources 
- Difficulty in 
interpretation 

Classification of 
lithological units, 
determination of 
zones of changes, 
analysis of 
geochemical data. 
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Naive 
Bayes 

A classifier based on 
Bayes' theorem, 
assuming the 
independence of 
features. 

- Speed and 
simplicity 
- Works well on 
small datasets and 
with text data 

- Simplified 
assumptions 
about the 
independence of 
features 
- Not always 
suitable for 
complex 
dependencies 

Mineralization 
identification, 
risk assessment of 
geological 
processes, basic 
classification of 
geological data. 

Note-Compiled by the author  
 

Teaching workers how to use these new tools will also be needed to help the mining 
companies succeed. Some of the ways things are done in the current systems will have to be 
thrown out to make room for the computer learning ways of looking at information. Computer 
learning has been found to be good at mineral searching, but it also has its problems like any 
other tool. The beginning investment of resources will be needed if the companies would want 
to avoid upset reactions from the people being shown new information handling practices [44]. 

The worth of any machine-learning gizmo used for finding minerals will depend on how 
much good teaching data is around. This makes things tough, as mineral collections tend to be 
scattered and unusual, so making a full set of data is hard. So, with only a small set of data, 
gizmos get too focused on the teaching data, and finding minerals fails to reach the exactness 
needed. Using machine learning to look at current ways to do things needs a lot of money for 
data and teaching [45]. 

Since machine learning programs can look at huge amounts of info, they can find the 
layouts of mineral stashes that might be missed by old search methods. These programs use 
complicated methods to look at big sets of earth science data. At the same time, how well the 
programs work depends a lot on how good the data is. For example, machine learning needs 
top-notch, well-arranged, and labeled data sets to teach reliable programs [46]. Otherwise, its 
potential in finding minerals will be lost. As we have seen in successful cases, the programs can 
find mineral spots, giving a big boost to the mining field. Therefore, earth scientists need to 
change their ways. 

The power of machine learning tools to rapidly review extensive geological records 
permits the finding of trends and weird things that are beyond the capacity of traditional ways. 
This edge is clear in mineral hunting, where the speed of real-time information processing can 
speed up smart decisions. Combining flawless information into a machine learning system 
improves geophysical modeling and reversal, subsequently making predictive models for 
mineral finding better. New ways in active mineral exploration places have certainly shown 
awesome accuracy, with one method making predictions for zinc amounts in boreholes with a 
97% accuracy rate [44]. Such accuracy beats standard analysis methods, which rely on longer 
but less accurate lab tests. 

In short, machine learning is changing how we look for minerals by making it easier to 
look at data, finding complex earth science details, and making our guesses about where 
minerals are better. Sadly, for this awesome tech to work well, we need lots of money, to teach 
people how to use it, and to find good data that tells us what's what. In the end, doing machine 
learning and the old ways of finding minerals together will help us find resources in a way that's 
good for the planet. 

Conclusion 
Mineral resources play a vital role in driving economic development, fostering 

technological progress, and promoting sustainable practices. As global demands change, it is 
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crucial to adopt improved techniques for resource exploration. Traditional obstacles in mineral 
exploration, such as geological intricacies and technical constraints, can be mitigated through 
the use of remote sensing and machine learning. Satellite imaging offers a wealth of information 
for evaluating the Earth's surface, while machine learning uncovers intricate patterns within 
extensive datasets, facilitating immediate monitoring and rapid data analysis. 

Remote sensing technologies enable real-time data gathering regarding geological 
shifts, improving awareness of the situation. Satellites from the Earth Resources Observation 
Satellite program assist in tracking land and mineral resources, allowing decision-makers to 
quickly respond to environmental changes through sophisticated data analysis driven by 
machine learning. 

Machine learning techniques, including neural networks and decision trees, examine 
geological information by revealing underlying patterns. Neural networks effectively capture 
non-linear relationships to forecast mineral resources, whereas decision trees identify critical 
factors that affect mineral deposits. The combination of remote sensing data enhances 
geological forecasting further. 

Improvements in remote sensing methods, such as satellite and aerial surveys, empower 
geologists to quickly gather information across vast regions, which is crucial for locating 
mineral deposits. Subsequently, machine learning analyzes these datasets to detect patterns and 
relationships, accelerating exploration and increasing precision. 

The integration of space-based data collection with machine learning in mineral 
exploration has become essential for sustainable resource management. This collaboration 
supports real-time monitoring, enhanced data interpretation, and faster identification of valuable 
resources, transforming the landscape of geological exploration. 
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Орынбасарова Э.О., Алпысбай М.А., Ильясова А.,  
Сыдык Н., Ержанкызы А. 

ЭКОЛОГИЯЛЫҚ БАҒЫТТАЛҒАН ПАЙДАЛЫ ҚАЗБАЛАРДЫ БАРЛАУ: 
ҚАШЫҚТЫҚТАН ЗОНДТАУ МЕН МАШИНАМЕН ОҚЫТУДЫҢ СИНЕРГИЯСЫ 

Аңдатпа. Мақалада пайдалы қазбаларды барлауда қашықтықтан зондтау және 
машиналық оқыту синергиясын қолдану перспективалары қарастырылады. Осы екі озық 
технологияның үйлесімі геологиялық зерттеулерге жаңа көкжиектер ашады, 
минералдануды тиімдірек және дәл анықтауға, литологиялық бірліктерді картаға 
түсіруге, құрылымдық ерекшеліктер мен өзгеру аймақтарын талдауға мүмкіндік береді. 
Жұмыста терең нейрондық желілер мен кластерлеу әдістерін қоса алғанда, машиналық 
оқытудың әртүрлі алгоритмдерін пайдалана отырып, қашықтықтан зондтау деректерін 
өңдеудің ағымдағы әдістеріне талдау жүргізіледі. Геологиялық барлауда арақашықтықтан 
зерделеу және машиналық оқыту синергиясын қолданудың жетістіктерін көрсететін 
практикалық мысалдарға ерекше назар аударылды. Болашақта пайдалы қазбаларды барлау 
процестерінің тиімділігі мен тұрақтылығын едәуір арттыруға мүмкіндік беретін осы саладағы 
әрі қарайғы зерттеулердің негізгі сын-қатерлері мен перспективалары талқыланады. 

Кілт сөздер: Қашықтықтан зондтау; геологиялық картаға түсіру; спутниктік 
суреттер; пайдалы қазбаларды барлау; оптикалық; гиперспектрлік суреттер. 

Орынбасарова Э.О., Алпысбай М.А., Ильясова А.,  
Сыдык Н., Ержанкызы А. 

ЭКОЛОГИЧЕСКИ ОРИЕНТИРОВАННАЯ РАЗВЕДКА ПОЛЕЗНЫХ 
ИСКОПАЕМЫХ: СИНЕРГИЯ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ И 

МАШИННОГО ОБУЧЕНИЯ 
Аннотация. В статье рассматриваются перспективы применения синергии 

дистанционного зондирования (ДЗ) и машинного обучения (МО) в разведке полезных 
ископаемых. Сочетание этих двух передовых технологий открывает новые горизонты для 
геологических исследований, позволяя более эффективно и точно выявлять 
минерализацию, картировать литологические единицы, а также анализировать 
структурные особенности и зоны изменений. В работе проводится анализ текущих 
методов обработки данных дистанционного зондирования с использованием различных 
алгоритмов машинного обучения, включая глубокие нейронные сети и методы кластеризации. 
Особое внимание уделено практическим примерам, иллюстрирующим успехи применения 
синергии ДЗ и МО в геологоразведке. Обсуждаются основные вызовы и перспективы 
дальнейших исследований в данной области, что позволит в будущем значительно повысить 
эффективность и устойчивость процессов разведки полезных ископаемых. 

Ключевые слова: Дистанционное зондирование; геологическое картографирование; 
спутниковые снимки; разведка полезных ископаемых; оптические; гиперспектральные снимки. 

 
 
 
 
 
 
 


